

Effects of Forest Management & Wood Utilization on Carbon Sequestration & Storage in California: Update on project status

NIACS

Forest Carbon and Climate Program Department of Forestry MICHIGAN STATE UNIVERSITY

Nadia Tase Forest Health Research & Monitoring Program Manager Fire and Resource Assessment Program, CAL FIRE

> Principal Investigator: Kendall DeLyser Director, Climate Science, American Forests

> > California Board of Forestry and Fire Protection Meeting January 22, 2025

Background

- Establish baseline forest conditions and carbon stocks grounded in FIA data
- Estimate a baseline rate of forest disturbances (land use change, management, and natural disturbance)
- Identify treatable acres that would benefit from wildfire resilience treatments, considering forest type, owner and ecoregion (Needs Assessment)
 - Approx. 11 M acres in need of wildfire hazard reduction treatments (1/3 of all forests)
 - Treatable acres limited to 7.4 M acres
- Model forest carbon storage outcomes based on:
 - Business-as-usual (BAU) management + static climate (existing growth and natural disturbances)
 - BAU management + future climate (climate-adjusted growth, natural disturbances, post-fire regen failure)
 - Alternative forest management and wood utilization scenarios + future climate
 - Whole-sector approach: ecosystem + wood products + substitution + leakage + economics

Scenarios

Scenario	Acres/yr*
Business-as-usual (2000-2021 avg) – 235k ac/yr harvest/thinning; 45k ac/yr understory/pile burn	280,000
Landscape restoration - Post-fire salvage/reforestation of backlog by 2030 per reforestation strategy and future high severity fire areas w/in 3-5 yrs per Westerling/Davis data on future fire/regen failure	247,000**
Fire resilience tx including MOG - Mech up to 50% slope, HT, follow-up RX fire, and standalone RX fire per landscape resilience needs assessment	822,000 ***
Forest conservation - Reduced deforestation, i.e., no net loss per LUC from NLCD	13,000
Silvopasture - Low density native plantings in pasture per TNC reforestation hub data on opportunity	9,500
Extended (50 \rightarrow 80 yrs) or altered rotations (extended on public, 50 \rightarrow 40 on pvt due to fire hazard concerns) - Applied to BAU even-aged acres	115,000
Innovative wood products - Excess material from fire resilience tx to mass timber, transportation fuels or biochar	
*average during 10-year treatment pulse (represents peak)	

2023 **forest accomplishments are 80,000 acres in the Interagency Treatment Tracker ***2023 **forest** accomplishments are 786,000 acres in the Interagency Treatment Tracker

Portfolios

Acres/yr*

1.3 M

1.4 M

Scenario Portfolios

Ramp up = BAU + reforestation/resilience tx + innovative wood products trifecta

Max Natural Climate Solutions (Max NCS) = BAU + Ramp up + reduced deforestation + silvopasture + extended rotations (applied to some BAU acres) + innovative wood product trifecta

*average during 10-year treatment pulse (represents peak)

Key Findings

- Modeling climate impacts suggests ~50% forest area and carbon stocks losses due to high-severity wildfire and post-fire regen failure by 2070.
- Aligns w/ CARB study but projects greater losses.

Comparison of net forest/HWP carbon loss, 2014-2045, for this study and CARB Scoping Plan modeling					
Study	CBAU	Preferred scenario	Treatment acres/year		
CARB	-7%	-8%	2.3 M ac/yr tx (includes shrub/grass)		
This study	-25% (-50% start of model in 2022 to 2071)	-12% (-5% start of model in 2022-2071 – includes leakage, substitution)	1.4M ac/yr tx (Max NCS)		

- Active management across a broad range of forest types improves resilience, reduces forest carbon and area losses.
- Forest resilience in future decades requires managing forests to a lower stand density at a landscape scale and conducting extensive post-fire salvage/reforestation activities.
- Wood utilization is necessary to increase forest sector sink strength associated with landscape-scale scenarios; C benefits improved, even when considering emissions/leakage.
- Max NCS + Innovative Wood Utilization portfolio is the only one that gives us a consistently better carbon trajectory than CBAU.

Key Findings – Economics Sam Evans, FRAP Research Economist

- During 10-year treatment pulse, the resilience and post-fire restoration treatments require up to an **additional** \$1.8 billion annually across all ownerships.
 - Pre-fire resilience expenditures are 52-55% of the total additional cost, remainder is post-fire restoration.
 - Costs include in-forest treatment, transportation, and in some cases stumpage payments to landowners.
 - These are high-level estimates at the state-level and do not account for regional or local market conditions.
- Total treatment costs are \$2.3B and \$2.5B for Max NCS and RU, respectively.

Key Findings – Economics

Sam Evans, FRAP Research Economist

- Depending on timber market conditions, wood product revenues could offset 31% to 94% of these costs.
 - Additional funding sources will still be necessary.
 - Revenues predominantly determined by sawlog value. Biomass revenue contributes very little offsetting the costs, even with optimistic price conditions.

Portfolio	Total pre-fire resilience treatment cost (\$ million per year)	HWP revenue (\$ million per year)	Fraction of pre-fire resilience treatment cost covered
Ramp Up	\$1,008	\$412 - \$946	41% - 94%
Max NCS	\$896	\$385 - \$884	31% - 70%

Key Findings – Economics Sam Evans, FRAP Research Economist

- Processing capacity for industrial roundwood and utilized biomass needs to expand significantly to accommodate higher modeled harvest volumes during treatment pulse.
- Number of sawmills need to **nearly double**.
- Biomass facilities need to more than double.
- Large regional differences in capacity needs report estimates capacity increases needed across various wood baskets in California.
- Additional research needed on the exact type of material coming off the landscape (species composition, log size, etc).
 - FVS/Biosum project (FHRP grant) is meant to answer these questions.

Project status update

- Executive briefings provided to CAL FIRE, CNRA/Task Force, USFS last summer/fall
- Report release February 2025
 - Detailed methodology including resilience treatment needs assessment
 - Results by individual and portfolio scenarios, ownership, ecoregion
 - Economic analysis
- Peer-reviewed publication(s) to follow